

Opposite Voltages Fed Two Element Array

Opposite voltages fed two element array

Advantages

- Wideband
 - Gain pattern variation is small
 - Forward gain 6.4-6.5dBi on 15m band 21.000-21.450 MHz
 - F/B > 20dB
 - Good SWR , typical SWR < 1.5
- Straight elements
- Good for low bands
- Multiband operation with equal performance possible by switching.
 - Feedpoint impedance change however.

Gain pattern on center frequency

Gain pattern variation on 15m band Inter-element cable

Gain pattern variation on 15m band With two cables

Traditional parasitic yagi Gain pattern variation on 15m band

SWR on 15m band, L-match used

Traditional parasitic yagi SWR on 15m band, L-match used

	EZNEC ver. 5.0				noc doc	orinti	ion
2FB21	50 ohm välikaapeli	9.2.2009	19:43:42	ΓZ		scripti	
	ANTENNA DESCRIPTION			15m l	band, with inte	r-element	cable
Freque Wire L	Frequency = 21.2 MHz Wire Loss: Aluminum (6061-T6) Resistivity = 4E-08 ohm-m, Rel. Perm. = 1						
	WIRES						
No .	End 1 Coord. (m) Conn. X Y Z Conn. 2 -3 23 A	End 2 Coo X 2	ord.(m) Di Y Z 323 0	a (mm) Segs 12 11	Insulation Diel C Thk(m 1 0	IM)	
2	0, -3.565, 0	2, 0,	3.565, 0	12 11	1 0		
Total	Segments: 22						
	SOURCES						
No. 1	Specified Pos. Actual Pos. Wire # % From E1 % From E1 Seg V1 0.00 0.00	Amplitude (V/A) 1	Phase Type (deg.) Ø I				
No loa	No loads specified						
	TRANSMISSION LINES						
No. 1	End 1 Specified Pos End 1 Act End 2 S Wire # % From E1 % From E1 Wire # 1 50.00 50.00 2	pecified Pos % From E1 50.00	5 End 2 Act Leng % From E1 (m) 50.00 5.	th 20 (ohms) 3 50	VF Loss (dB/100 m) 0.75 4	Loss Freq (MHz) 100	Rev/Norm N
No tra	ansformers specified						
	L NETWORKS (RLC Type)						
No.	Specified Pos. A Port 1 Wire # Port 1 % From E1 % Fr Port 2 Wire # Port 2 % From E1 % Fr 1 50.00 50 V1 0.00 0	ctual Pos. om E1 Seg om E1 Seg .00 6 .00	R(ohms) Ser Br Sh Br Short Short	L(uH) C(pF) Ser Br Ser Br Sh Br Sh Br 0.16 Short Short 217	R Freq(MHz) Ser Br Sh Br Ø Ø	Type Ser Br Sh Br Ser Ser	
	· ·····						

Ground type is Free Space

OH1TV

Traditional parasitic two element yagi

The circuit relations for the elements are:

 $V_1 = I_1 Z_{11} + I_2 Z_{12}$ $0 = I_2 Z_{22} + I_1 Z_{12}$

 \succ I₂ = - I₁ * (Z₁₂ / Z₂₂)

source: Kraus, Antennas

Phase difference of element currents is
 strongly dependent on element 2 detuning (Z₂₂)
 independent of element 1 detuning (Z₁₁)
 dependent on mutual impedance Z₁₂, which is quite insensitive to frequency change however

>Gain pattern is frequency sensitive

F/B is good only on narrow band width

Opposite voltages fed two element array

 $I_1 = current in element 1$

 $I_2 = current in element 2$

 V_1 = voltage at feed point

The circuit relations for the elements are:

 $V_1 = I_1 Z_{11} + I_2 Z_{12}$ $-V_1 = I_2 Z_{22} + I_1 Z_{12}$

$$\succ$$
 I₂ = - I₁ * (Z₁₁+ Z₁₂) / (Z₂₂ + Z₁₂)

> Phase shift I_2/I_1 depends on all Z's

> Angle difference of Z_{11} and Z_{22} vary slowly as function of frequency

>Z₁₂ is quite insensitive to frequency change and is present on both sides of the divider

> Amplitudes of currents I_1 and I_2 become almost the same

>Gain pattern is quite insensitive to frequency change.

Good F/B over wide frequency band is possible

How to do it?

- Both elements are voltage driven, in opposite phase.
 - From the feedpoint of element 1 ("driven") there is a ½ wavelength cable (electrical wavelength) to the feedpoint of element 2 ("reflector).
 - No reversal of cable polarity is used.
 - Voltage at element 2 feedpoint is 180 degrees from element 1 feedpoint voltage.
 - In traditional parasitic yagi element 2 voltage is zero.
 - An alternative way is to bring ½ wavelength cables from the antenna feedpoint to both elements.
 - Connection to elements is in opposite polarity.
 - In the antenna feedpoint the cables are connected parallel.
 - Suitable impedance for the phasing cable is 50 ohm.
 - Element currents depend on their detuning and are not in phase with their feedpoint voltages
- Element detuning is used for current phasing
 - Dimensions are different in comparison to traditional 2-element yagi.
 - "Reflector" becomes longer and "driven element" shorter.
- Antenna feedpoint resistance becomes 17-27 ohm, depending on boom length
 - Reactive part tend to be a bit inductive
 - Matching to 50 ohm is easy with low-pass L-match
 - the inductive component becomes part of the matching circuit.
- Element 2 can be a "reflector" or "director".
 - 180 degree direction switching is possible when detuning is done with lumped components
- Antenna can be optimized for a certain hight
- Eznec 5 handles this antenna ok.

Is it phased array or log-periodic ?

- In phased array
 - Antenna elements are equal in size.
 - Detuning of elements is not used to control current relations
 - Separate phasing unit is used to control currents relations
 - Feed from the phasing unit to the elements is with current forcing
 - $\frac{1}{4} + n^{*} \frac{1}{2}$ (n=0,1,2..) wavelength long cables are used.
- In log-periodic antenna
 - Elements are different in size
 - Detuning of elements mainly dictate currents relations
 - Each element is fed.
 - Length of feed-line from next element is the actual distance.
 - Electrical length of the feed-line is (180 deg (inversion) actual length in wavelength degrees)
- In this antenna "phasing" means, that
 - Equal but opposite polarity voltages are brought to the elements.
 - 1/2 wavelength cable can be used between the elements for the inversion and "voltage forcing"
 - or both elements are fed with ½ wavelength cables but connections to elements are in opposite polarity
 - Current phase relations are created by detuning both elements
 - one below the resonance and the other above.
 - detuning can be done with lumped components or by changing the lengths of the elements
 - In my opinion this is closer to log-periodic than phased array

Applications

- In amateur radio
 - High performance HF monoband antenna from 80m to 10m
 - On low bands, 80m-30m, two elements may be the maximum one can have
 - When instant 180 degree direction change is an advantage
 - contest station etc.
 - Two element vertical array without "phasing box"
 - By using lumped components for detuning, direction switching is possible
 - Multiband antenna for QRP
 - Needs quite complex switching however.

Examples of low band antennas

Two element vertical

Spacing of verticals 0.15-0.25 wavelengths Verticals radiators 0.25 wavelength long

Opposite voltage fed array by OH1TV

Two element vertical

Spacing of verticals 0.15-0.25 wavelengths Verticals radiators 0.25 wavelength long

Opposite voltage fed array by OH1TV

Two verticals for 80m SSB 20m spacing, 104 degrees

	3.78 MHz
Cursor Elev	23.0 deg.
Gain	3.79 dBi

0.0 dBmax

Slice Max Gain 3.79 dBi @ Elev Angle = 23.0 deg. 39.5 deg.; -3dB @ 7.8, 47.3 deg. Beamwidth Sidelobe Gain -15.66 dBi @ Elev Angle = 167.0 deg. Front/Sidelobe 19.44 dB

0.0 deg.

3.79 dBi

= -0.09116 + j 0.06896 Ret Loss 18.8 dB

L1=2.2uH

C1=1400pF

Elevation Plot

Outer Ring

Azimuth Angle

80m SSB, horizontal elements 30m long boom 12m, optimized for free space

80m SSB, elements 30m long boom 12m, antenna height 40m, optimized for free space

Total Field

EZNEC

3.78 MHz

11.17 dBi 0.0 dBmax

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. 11.17 dBi	Cursor Elev Gain	27.0 deg. 11.17 dBi 0.0 dBma
Slice Max Gain Bearnwidth Sidelobe Gain Front/Sidelobe	11.17 dBi @ Elev Angle = 27.0 deg. 30.6 deg.; -3dB @ 12.7, 43.3 deg. -6.67 dBi @ Elev Angle = 155.0 deg. 17.84 dB		

11.32 dBi 0.0 dBmax

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. 11.32 dBi	Cursor Elev Gain	26.0 deg. 11.32 dBi 0.0 dBma
Slice Max Gain Beamwidth Sidelobe Gain Front/Sidelobe	11.32 dBi @ Elev Angle = 26.0 deg. 30.5 deg.; -3dB @ 12.6, 43.1 deg. -8.19 dBi @ Elev Angle = 84.0 deg. 19.51 dB		

80m SSB, elements 30m long boom 12m

80m CW, elements 30m long boom 12m

80m CW, elements 30m long boom 12m

80m SSB, 26m long elements boom 12m, optimized for free space

80m SSB, 26m long elements boom 12m, 40m high, optimized for free space

Total Field

EZNEC

3.78 MHz

Elevation Plot Azimuth Angle 0.0 deg. Outer Ring 11.09 dBi		Cursor Elev Gain	26.0 deg. 11.09 dBi 0.0 dBmax
Slice Max Gain Beamwidth	11.09 dBi @ Elev Angle = 26.0 deg. 30 5 deg.: -3dB @ 12.7, 43.2 deg.		

 Beamwidth
 30.5 deg.; -3dB @ 12.7, 43.2 deg.

 Sidelobe Gain
 -6.21 dBi @ Elev Angle = 155.0 deg.

 Front/Sidelobe
 17.3 dB

80m SSB, 26m long elements boom 12m

80m CW, 26m long elements 12m boom, free space

3.52 MHz

Elevation Plot Azimuth Angle Outer Ring	0.0 deg. 10.73 dBi	Cursor Elev Gain	28.0 deg. 10.73 dBi 0.0 dBmax
Slice Max Gain Beamwidth Sidelobe Gain Front/Sidelobe	10.73 dBi @ Elev Angle = 28.0 deg. 33.0 deg.; -3dB @ 13.4, 46.4 deg. -5.75 dBi @ Elev Angle = 157.0 deg. 16.48 dB		

80m CW, 26m long elements 12m boom, free space

Multibanding

- How to do
 - For each band ½ wavelength inter-element cable is needed for voltage inversion and voltage forcing
 - Two serial capacitors in the center of both elements are needed to shorten the electrical length of the elements. Coils can be used to lengthen the elements
 - As an example antenna originally made for 21MHz can be tuned this way to 18, 25 and 28 MHz
 - Gain patter do not change, forward gain remains the same.
 - When tuning up in frequency, antenna feedpoint impedance increases and opposite happens when tuning down.
 - L-match can be used to reach 50 ohm.
 - When tuning up, voltages increase and reliability of the switches becomes a challenge.
 - At least for QRP this can be good multiband antenna.

15m antenna tuned to 17m

15m antenna tuned to 12m

15m antenna tuned to 10m

15m antenna tuned to 20m SWR<1.5 -bandwidth is only 50kHz, not usable

