Modeling an 80/40/20M Fan Dipole for DX

New Station – New Antennas!

- Installation and SWR Response
- Where is the DX?
- How do these Dipoles "Play?" (EZNEC)

What about Terrain?

- HFTA and Terrain
- The effect on these Dipoles

Potential Improvements

- Higher Dipoles?
- Different Types of Antennas?

Appendix

Effect of Sea Water Other HF Bands

Larry Banks, W1DYJ

First licensed: 1962 as KN1VFX (Novice)

W1DYJ since 1966 – Amateur Extra

10 Matthews Way Harpswell ME

33 Blueberry Hill Road Woburn MA

Modeling an 80/40/20M Fan Dipole for DX

New Station ~ New Antennas!

- Bought a 2nd home in Harpswell, ME, in 2008
- Need HF antennas on 80/40/20 to understand local conditions
- No tall trees -- did not want a tower
- Low band verticals make sense but radials are a lot of work
 - → Simple Dipoles for now: 80, 40, 20 in a "Fan"
 - Use a corner of the house as the center point
 - (Yes too low!)
 - Build Them Understand Them Improve Them
- Add 160, 60, 30, 17, 12, 10, 6 in the future

Modeling an 80/40/20M Fan Dipole for DX

Simple Dipoles for now: 80, 40, 20 Fan

Use a corner of the house as the center point

(The numbers on the wires are for use with EZNEC.)

Modeling an 80/40/20M

Antenna Orientation

March 2012

DXCC WAS VUCC WAC

Modeling an 80/40/20M Fan Dipole for DX

SWR Response

80INI	3.67	1.3	
60M	5.30	7.2	
40M	7.044	1.1	
30M	10.10	6.4	
	11.20	3.9	
20M	14.15	1.4	
17M	18.10	4.5	
	18.95	3.5	
15M	21.20	5.6	
	22.55	2.5	
12M	24.95	4.8	
	26.60	3.2	
10M	28.30	5.8	
The SWR is measured			

at the transceiver. The attenuation of the 30 ft. of RG-8X coax feeding the antenna can account for most of the difference between measured and theoretical SWR.

Modeling an 80/40/20M Fan Dipole for DX

Where is the DX?

At what angle (from the horizon) does the RF arrive?

We must always remember this simple truth: The ionosphere controls the elevation angles of the RF we see at our location, not our antenna!

Data from the ARRL Antenna Book , Dean Straw N6BV editor.

Information available as tables: the statistical distribution of elevation angles that are necessary for communication via the ionosphere from one location to another.

Also part of the software program **HFTA** (High Frequency Terrain Analysis)

Primer on HFTA's "Elevation-Statistics" Models

Primer on HFTA's "Elevation-Statistics" Models

Page 10

DXCC WAS VUCC WAC

3-22°

Elevation Statistics for New England – 80M

DXCC WAS VUCC WAC

3-20°

Elevation Statistics for New England – 40M

DXCC WAS VUCC WAC

3-18°

Elevation Statistics for New England – 20M

Modeling an 80/40/20M Fan Dipole for DX

The previous slides show where the DX comes from, so... How do these dipoles "play" from 3-22°

using EZNEC:

EZNEC is a powerful but easy-to-use program for modeling and analyzing nearly any kind of antenna *in its actual operating environment*.

EZNEC:

- plots azimuth and elevation patterns
- tells you gain, feedpoint impedance, SWR, and current distribution
- reports beamwidth, 3-dB pattern points, f/b ratio, takeoff angle
- ...and more.

REVIEW ~ Ideal EZNEC Dipole Patterns

Elevation °	<u>Gain (dBi) @ 60°</u>	Azimuth
90	3.9 dBi	\bigtriangleup
20	- 5.6	- 9.5 dB
10	- 8.9	-12.8
5	-12.8	-16.7

90 (Africa)

335 (Japan)

170 (S. America)

Elevation °	<u>Gain (dBi) @ 60°</u>	Azimuth
90	4.8 dBi	\bigtriangleup
20	- 1.6	- 6.4 dB
10	- 5.0	- 9.8
5	- 9.1	-13.9

170 (S. America)

335 (Japan)

Elevation °	<u>Gain (dBi) @ 60°</u>	Azimuth
90	6.0 dBi	\bigtriangleup
20	1.3	- 4.7 dB
10	- 1.8	- 7.8
5	- 5.9	-11.9

Modeling an 80/40/20M Fan Dipole for DX

Conclusions

 \bullet We want our DX antennas to "play" from 3 $^\circ\,$ to 22 $^\circ\,$ and be omnidirectional

•These dipoles are "OK" for Azimuth → ± ~ 1½ dB
• In this case low is good!

These dipoles are not so good for Elevation

- Gain straight up at 90° : 4-6 dBi
- Gain where we want it, $<20^{\circ}$ is not so good: 5 to -17 dB

What about the effect of local terrain? \rightarrow Next

Modeling an 80/40/20M Fan Dipole for DX

The Effect of Terrain HFTA (High Frequency Terrain Analysis)

- We have looked at where the Qs come from... (3-22°)
- We know these antennas aren't great for DX... ($-5 \rightarrow -17 \text{ dB}$)
- But how does the local terrain in Harpswell, ME, effect the RF?

Remember this simple truth:

The ionosphere controls the elevation angles, not our transmitting antenna – but the local terrain affects it!

HFTA

HFTA (HF Terrain Assessment), developed by Dean Straw N6BV. HFTA is available on the latest <u>ARRL Antenna Book</u> <u>CD-ROM</u>. HFTA shows visually how the elevation angles of a horizontal dipole, Yagi or stacked Yagis cover the statistical distribution of elevation angles that are necessary for communication via the ionosphere from one location to another.

We must always remember this simple truth:

The ionosphere controls the elevation angles, not our transmitting antenna!

HFTA: Europe ~ 60°

80M (3.666 MHz)

40M (7.044 MHz)

20M (14.15 MHz)

HFTA: Africa ~ 90°

80M (3.666 MHz)

40M (7.044 MHz)

20M (14.15 MHz)

HFTA: South America ~ 170°

80M (3.666 MHz.)

40M (7.044 MHz.)

20M (14.15 MHz.)

Modeling an 80/40/20M Fan Dipole for DX

Page 26

HFTA: Japan ~ 336°

80M (3.666 MHz.)

40M (7.044 MHz.)

20M (14.15 MHz.)

Modeling an 80/40/20M Fan Dipole for DX

Summarize: Effect of Terrain

The Effect of the Local Terrain

	Europe	Africa	S. America	Japan
80M	0	++	—	+/-
40M	++	++	+/-	0
20M	+	+	+/-	++

How can I improve on these dipoles? → Next

Modeling an 80/40/20M Fan Dipole for DX

Potential Improvements

→ Will making them higher help much?

- EZNEC with dipole centers @ 36' (rather than 18')
- HFTA with 20M dipole center = 18' & 36'

→ What about a different antenna on 20M?

• HFTA: Dipole 2 18' vs. 2 el Yagi & 3 el Yagi @ 32'

80M ~ 3.666 MHz.

40M ~ 7.044 MHz.

EZNEC+

14.15 MHz

EZNEC+

Potential Improvement?

Total Field

20M ~ 14.15 MHz.

0 dB

Original @ 18' center ~ 1/4 λ 14.15 MHz Total Field EZNEC+ Total Field 0 dB @ 36' center ~1/2 λ @ Azimuth = 60° 14.15 MHz Elevation ° Gain @ 18' Elevation @ 36' Elevation Λ 90 6.0 dBi Δ -0.1 dBi \wedge 20 1.3 +4.0 +4.1 dB +8.7 dB - 4.7 dB 10 - 1.8 - 7.8 +0.8 +0.9 +8.7 5 - 5.9 -11.9 - 3.5 - 3.4 +8.5

14.15 MHz

EZNEC+

Total Field

HFTA – 20M

Dipoles @ 18' & 36'

(To Europe)

20M ~ 14.15 MHz.

HFTA – 20M Dipole @ 18' 2 El Yagi @ 32' 3 El Yagi @ 32'

(To Europe)

Page 34

DXCC WAS VUCC WAC

Modeling an 80/40/20M Fan Dipole for DX

Conclusions

Dipoles: raise center from 18' to 36'

- 80M: doubling the height hurts some >> but $\frac{1}{2} \lambda$ is 135'!
- 40M: doubling the height is a wash >> $\frac{1}{2} \lambda$ is 66'
- 20M: helps by better than an S-Unit!

20M: need a "real" antenna

Homebrew? Hexx Beam? S

Spiderbeam?

Modeling an 80/40/20M Fan Dipole for DX

<u>Appendix</u>

- Saltwater Analysis
- Other HF Bands

Modeling an 80/40/20M Fan Dipole for DX

Salt Water Analysis

Effect of Location – what about the cove? Does it help low angle radiation?

Theory: Salt water affects vertical antennas more than horizontals.

March 2012

Effect of Salt Water- what about the cove?

Theory: Salt water affects vertical antennas more than horizontals.

Cond (S/m)	<u>Diel Const</u>	
0.005	13	O Direct Entry
0.001	3	C Extremely Poor: cities, high bldgs
0.001	5	C Very Poor: cities, industrial
0.002	10	🔿 Sandy, dry
0.002	13	C Poor: rocky, mountainous
0.005	13	Average: pastoral, heavy clay
0.006	13	Pastoral, med hills and forestation
0.0075	12	Flat, marshy, densely wooded
0.01	14	Pastoral, rich soil, US Midwest
0.0303	20	C Very Good: pastoral, rich, central US
0.001	80	C Fresh water
5	81	C Salt water
<u>0</u> k		incel

EZNEC can have two different "soils" in a radial pattern:

Previous plots assumed average soil: Conductivity = 0.005 Siemens/meter Dielectric Constant = 13

Actual location: Salt water ~400' to the North West ~1000' to the East

For Salt Water: Conductivity = 5 Siemens/meter Dielectric Constant = 81

Experiment: "Average" soil for 400' circle Salt Water beyond that

400 ft

Effect of Salt Water→ Europe @ Elevation = 20°

There is no difference!

Page 39

DXCC WAS VUCC WAC

Effect of Salt Water -> Europe @ Elevation = 20° A Test of the Method

Salt Water everywhere (but house doesn't float!)

Modeling an 80/40/20M Fan Dipole for DX

Other HF Bands

EZNEC+

5.3 MHz

Page 42

Page 44

10

1

Page 46

EZNEC patterns

 $10M \sim 28.3 \text{ MHz}$ Height = $\pm 0.55\lambda$ SWR ~ 5.8:1

Elevation Plot		Cursor Elev	25.0 deg.
Azimuth Angle	40.0 deg.	Gain	9.59 dBi
Outer Ring	9.59 dBi		0.0 dBmax
			0.0 dBmax3E
3D Max Gain	9.59 dBi		
Slice Max Gain	9.59 dBi @ El	ev Angle = 25.	0 deg.
Beamwidth	24.0 deg.; -3d	IB @ 11.7, 35.	7 deg.
Sidelobe Gain	9.32 dBi @ El	ev Angle = 15	5.0 deg.
Front/Sidelobe	0.27 dB		

Modeling an 80/40/20M Fan Dipole for DX

Thank You

www.qsl.net/w1dyj

Modeling an 80/40/20M Fan Dipole for DX

March 2012